

Published on Web 02/27/2009

An Aldol-Based Synthesis of (+)-Peloruside A, A Potent Microtubule Stabilizing Agent

David A. Evans,* Dennie S. Welch, Alexander W. H. Speed, George A. Moniz, Andreas Reichelt, and Stephen Ho

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 Received January 5, 2009; E-mail: evans@chemistry.harvard.edu

Peloruside A (1) is a secondary metabolite of a marine sponge (*Mycale* genus) collected from Pelorus Sound, New Zealand. In addition to its structure elucidation, the initial disclosure by Northcote¹ also demonstrated peloruside A to be cytotoxic to P388 murine leukemia cells at nanomolar concentrations. Subsequent investigations² revealed peloruside's antiproliferation potency is similar to that exhibited by paclitaxel. The first synthesis of 1, reported by De Brabander, established the absolute stereochemistry of this natural product.³ In the interim, two additional syntheses have been published.^{4,5} The purpose of this communication is to report a convergent approach to this natural product suitable for analogue synthesis.

The deconstruction of **1** relies on the two highlighted aldol disconnections illustrated in Scheme 1. Based on prior art,⁶ we anticipated that the C_3 and C_{15} stereocenters would favorably influence the stereochemical outcome of these two bond constructions. In the following discussion, the syntheses of subunits **3** and **4** will be described along with their elaboration to (+)-peloruside A (1). The synthesis of **5** is included in the Supporting Information.

Scheme 1. (+)-Peloruside A Synthesis

The synthesis of C_1-C_6 synthon **3** requires six steps from commercially available (*S*)-4-benzyl-2-oxazolidinone^{7a} and is summarized in Scheme 2. Notably, the illustrated imide-based aldol bond construction establishes the C_2-C_3 syn stereochemistry with excellent diastereselection.^{7b}

Scheme 2. Synthesis of the C_1-C_6 Synthon 3^a

 a (a) 7, Bu₂BOTf, *i*-Pr₂EtN. (b) Me₃OBF₄, proton sponge. (c) PPTS, acetone, $\Delta.$

The synthesis of synthon **4**, based on the use of (*S*)-pantolactone, is summarized in Scheme 3. The chelate-controlled borohydride reduction was quite diastereoselective (95:5); however, competing conjugate reduction was noted as a minor side reaction.

Selection of the illustrated C₉ hydroxyl configuration in subunit 4 bears comment. On the basis of previous model studies probing the influence of β -oxygen stereocenters on aldehyde face selectivity,⁸ we concluded that the (*R*)-C₃, (*S*)-C₈, and (*R*)-C₉ stereocenters in fragments **3** and **4** would be mutually reinforcing in this double stereodifferentiating aldol addition. A recent study by Paterson documents the diminished selectivities for this construction when the C₉ diastereomer is employed in a related aldol addition.⁹

Scheme 3. Synthesis of the $C_7 - C_{11}$ Synthon 4^a

^{*a*} (a) BnON(H)CCl₃, TfOH, rt. (b) Me₃Al, MeON(H)Me+HCl, CH₂Cl₂, 0 °C. (c) TESCl, Et₃N, DMAP, rt. (d) Me₂C=CHBr, *t*-BuLi, Et₂O. (e) Zn(BH₄)₂, -30 °C. (f) TBSCl. (g) O₃, PPh₃.

The aldol union of methyl ketone **3** and aldehyde **4** is summarized in Scheme 4.¹⁰ In developing this reaction, we noted a surprising diastereoselectivity dependence on the particular dialkylboryl enolate employed in the reaction. The desired diastereomer **12-R** was obtained in 81% with 9-BBNOTf (Et₃N, toluene).

Scheme 4. C₆-C₇ Aldol Bond Construction

Further complexity in this reaction is apparent by varying the C_8 hydroxyl protecting group: when C_8 bears a smaller protecting group (TES) a diminished diastereoselection (10:1) is observed. Finally, the structure of the C_{11} hydroxyl protecting group was also found to play a role in reaction diastereoselectivity.

The advanced stages of the synthesis are illustrated in Scheme 5. The triacetoxyborohydride reduction of **12**-R proceeded with the expected 1,3-anti diastereoselectivity (10:1).¹¹ A selective silylation of the less hindered C_5 hydroxyl group of diol **13a** delivered **13b**.

a (a) Me₄N(OAc)₃BH, AcOH, MeCN, -30 °C. (b) TBSCl, imidazole, rt. (c) Me₃OBF₄, proton sponge, CH₂Cl₂, rt. (d) Pd(OH)₂/C, H₂, EtOAc, rt. (e) Dess-Martin, pyridine, CH₂Cl₂, 0 °C. (f) 9-BBNOTf, DIPEA. (g) (*i*Pr)₂SiHCl, DMAP, DMF. (h) SnCl₄, -78 °C. (i) 1:1 TBAF, HOAc, THF, -20 °C. (j) DDQ. (k) H₂O₂, LiOH. (l) C₆H₂Cl₃COCl, DIPEA, THF, rt, then DMAP, toluene, 60 °C. (m) 1:1 4 N HCl, MeOH, 1 h, 0 °C, 2 h at rt.

The aldol union of aldehyde 15 and methyl ketone 5 deserves special mention. As illustrated, this reaction proceeds in good yield and diastereoselectivity (92%, dr = 20:1); nevertheless, the success of this reaction critically depends on the nature of the C₉ substituent. For example, the reaction does not proceed if the C₉ carbonyl is reduced and protected. We surmise that it is a simple case of enhanced aldehyde reactivity in 15 due to both reduced steric and enhanced electronic effects.

The chemo- and stereoselective triacetoxyborohydride reduction11 of diketone 16a also raises an interesting challenge. While we anticipated that steric effects would favor a selective anti reduction of the C_{13} carbonyl, we noted that virtually no C_{13}/C_9 carbonyl selectivity was obtained for this transformation. A solution to this problem was found in the intramolecular silane reductions reported by Davis.¹² Accordingly, silane **16b** was prepared in anticipation of an intramolecular hydride reduction. The subsequent ${\rm SnCl}_4$ promoted intramolecular anti reduction proceeded in the desired sense with 40:1 selectivity (85%). The removal of the $C_{11}-C_{13}$ disilyloxane protecting group in 17 was followed by a C₁₃-selective methylation of the derived diol to afford 18. Again, steric effects formed the basis for differentiation of the $C_{11}-C_{13}$ diol.

In the experiments leading up to the macrocyclization, we anticipated that we might selectively cyclize the diol 19 at C15 since the C₁₁ hydroxyl reactivity was estimated to be lower relative to the C₁₅ hydroxyl group by a comparison of their local steric environments. Toward this end, hydrolysis and subsequent Yamaguchi macrocyclization¹³ of diol 19 proceeded in 68% overall yield to afford the protected peloruside skeleton 20. It should be noted that the smaller macrolactone corresponding to cyclization of the C11 hydroxyl group was not observed. Subsequent deprotection afforded (+)-peloruside-A whose spectroscopic properties matched those of the natural product.

In conclusion, the synthesis of (+)-peloruside A has been accomplished in 22 steps (longest linear sequence) from commercially available (S)-pantolactone. The two pivotal aldol additions provide a straightforward approach to the convergent synthesis of the peloruside A skeleton. Upcoming objectives will be devoted to analogue synthesis.

Acknowledgment. Support has been provided by the NSF (CHE-0608664) and NIH (5R01-GM081546-01). Support from Merck, Amgen, NSERC of Canada (A.W.H.S.), and the E. Schering Foundation are also gratefully acknowledged. We thank Prof. De Brabander for a sample of (-)-1.

Supporting Information Available: Experimental details and analytical data including copies of ¹H and ¹³C NMR spectra for all new compounds and synthesis of methyl ketone 5. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) West, L. M.; Northcote, P. T. J. Org. Chem. 2000, 65, 445-449.
- (2) Hood, K. A.; West, L. M.; Rouwé, B.; Northcote, P. T.; Berridge, M. V.; Wakefield, St. J.; Miller, J. H. Cancer Res. 2002, 62, 3356-336
- Liao, X.; Wu, Y.; De Brabander, J. Angew. Chem., Int. Ed. 2003, 42, 1648-1652
- (4) (a) Taylor, R. E.; Jin, M. Org. Lett. 2005, 7, 1303–1305. (b) Taylor, R. E.; Jin, M. Org. Lett. 2003, 5, 4959–4961.
 (5) Ghosh, A. K.; Xu, X.; Kim, J.-H.; Xu, C.-X. Org. Lett. 2008, 10, 1001–
- 1004
- (6)(a) Paterson, I.; Gibson, K. R.; Oballa, R. M. Tetrahedron Lett. 1996, 37, 8585-8588. (b) Evans, D. A.; Coleman, P. J.; Côte, B. J. Org. Chem. 1997, 62, 788-789. (c) Evans, D. A.; Cote, B.; Coleman, P. J.; Connell, B. T. J. Am. Chem. Soc. 2003, 125, 10893-10898
- (a) Gage, J. R.; Evans, D. A. Org. Synth. 1989, 68, 77-82. (b) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127–2129. Evans, D. A.; Cee, V. J.; Siska, J. J. Am. Chem. Soc. 2006, 128, 9433–
- (8)9441
- (9) Paterson, I; Di Francesco, M. E.; Kuhn, T. Org. Lett. 2003, 5, 599-602.
- (10) For an allylation-based approach to the C_1-C_{11} fragment:Owen, R. M.; Roush, W. R. *Org. Lett.* **2005**, *7*, 3941–3944.
- Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. 1988, 10, 3560-3578.
- (12)
- Anwar, S.; Davis, A. P. *Tetrahedron* **1988**, *44*, 3761–3770. Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. *Bull. Chem. Soc. Jpn.* **1979**, *52*, 1989–1993. (13)

JA900020A